Centrifugal force (from Latin centrum, meaning "center", and fugere, meaning "to flee") represents the effects of inertia that arise in connection with rotation and which are experienced as an outward force away from the center of rotation. In Newtonian mechanics, the term centrifugal force is used to refer to one of two distinct concepts: an inertial force (also called a "fictitious" force) observed in a non-inertial reference frame, and a reaction force corresponding to a centripetal force.
The term is also sometimes used in Lagrangian mechanics to describe certain terms in the generalized force that depend on the choice of generalized coordinates.
The concept of centrifugal force is applied in rotating devices such as centrifuges, centrifugal pumps, centrifugal governors, centrifugal clutches, etc., as well as in centrifugal railways, planetary orbits, banked curves, etc. These devices and situations can be analyzed either in terms of the fictitious force in the rotating coordinate system of the motion relative to a center, or in terms of the centripetal and reactive centrifugal forces seen from a non-rotating frame of reference; these different centrifugal forces are not equal in general.
Contents |
The conception of centrifugal force has evolved since the time of Huygens, Newton, Leibniz, and Hooke who expressed early conceptions of it. The modern conception as a fictitious force or pseudo force due to a rotating reference frame as described above evolved in the eighteenth and nineteenth centuries.
Centrifugal force has also played a role in debates in classical mechanics about detection of absolute motion. Newton suggested two arguments to answer the question of whether absolute rotation can be detected: the rotating bucket argument, and the rotating spheres argument.[1] According to Newton, in each scenario the effects attributed to the centrifugal force would only be observed in the frame where the objects are stationary if that frame itself were rotating with respect to absolute space. Nearly two centuries later, Mach's principle was proposed, where, instead of absolute rotation, a physical law, which relates the motion of the distant stars to the local inertial frame force, gives rise to the centrifugal force and other inertia effects. Today's view is based upon the idea of an inertial frame of reference, which privileges observers for which the laws of physics take on their simplest form, and in particular, do not need to use centrifugal forces in their equations of motion in order to describe motions correctly.
The analogy between centrifugal force (sometimes used to create artificial gravity) and gravitational forces led to the equivalence principle of general relativity.[2][3]
Centrifugal force is often confused with centripetal force. Centrifugal force is most commonly introduced as a force associated with describing motion in a non-inertial reference frame, and referred to as a fictitious or inertial force (a description that must be understood as a technical usage of these words that means only that the force is not present in a stationary or inertial frame).[4][5]
There are three contexts in which the concept of the fictitious force arises when describing motion using classical mechanics:[6]
In the first context, the motion is described relative to a rotating reference frame about a fixed axis at the origin of the coordinate system. For observations made in the rotating frame, all objects appear to be under the influence of a radially outward force that is proportional to the distance from the axis of rotation and to the square of the rate of rotation (angular velocity) of the frame.
The second context is similar, and describes the motion using an accelerated local reference frame attached to a moving body, for example, the frame of passengers in a car as it rounds a corner.[6] In this case, rotation is again involved, this time about the center of curvature of the path of the moving body. In both these contexts, the centrifugal force is zero when the rate of rotation of the reference frame is zero, independent of the motions of objects in the frame.[7]
The third context is the most general, and subsumes the first two, as well as stationary curved coordinates (e.g., polar coordinates),[8][9][10][11] and more generally any system of abstract coordinates as in the Lagrangian formulation of mechanics.
If objects are seen as moving from a rotating frame, this movement results in another fictitious force, the Coriolis force; and if the rate of rotation of the frame is changing, a third fictitious force, the Euler force is experienced. Together, these three fictitious forces allow for the creation of correct equations of motion in a rotating reference frame.[7]
A reactive centrifugal force is the reaction force to a centripetal force. A mass undergoing curved motion, such as circular motion, constantly accelerates toward the axis of rotation. This centripetal acceleration is provided by a centripetal force, which is exerted on the mass by some other object. In accordance with Newton's Third Law of Motion, the mass exerts an equal and opposite force on the object. This is the reactive centrifugal force. It is directed away from the center of rotation, and is exerted by the rotating mass on the object that originates the centripetal acceleration.[12][13][14]
This conception of centrifugal force is very different from the fictitious force. As they both are given the same name, they may be easily conflated. Whereas the 'fictitious force' acts on the body moving in a circular path, the 'reactive force' is exerted by the body moving in a circular path onto some other object. The former is useful in analyzing the motion of the body in a rotating reference frame; the latter is useful for finding forces on other objects, in an inertial frame.
This reaction force is sometimes described as a centrifugal inertial reaction,[15][16] that is, a force that is centrifugally directed, which is a reactive force equal and opposite to the centripetal force that is curving the path of the mass.
The concept of the reactive centrifugal force is sometimes used in mechanics and engineering. It is sometimes referred to as just centrifugal force rather than as reactive centrifugal force.[17][18]
The table below compares various facets of the "fictitious force" and "reactive force" concepts of centrifugal force
Fictitious centrifugal force | Reactive centrifugal force | |
---|---|---|
Reference frame |
Non-inertial frames | Any |
Exerted by |
Acts as if emanating from the rotation axis, but no real source |
Bodies moving in curved paths |
Exerted upon |
All bodies, moving or not; if moving, Coriolis force also is present |
The object(s) causing the curved motion, not upon the body in curved motion |
Direction | Away from rotation axis, regardless of path of body |
Opposite to the centripetal force causing curved path |
Analysis | Kinetic: included as force in Newton's laws of motion |
Kinematic: related to centripetal force |
Lagrangian mechanics formulates mechanics in terms of generalized coordinates , which can be as simple as the usual polar coordinates or a much more extensive list of variables.[19][20] Within this formulation the motion is described in terms of generalized forces, using in place of Newton's laws the Euler–Lagrange equations. Among the generalized forces, those involving the square of the time derivatives are sometimes called centrifugal forces.[21][22][23][24]
The Lagrangian approach to polar coordinates that treats as generalized coordinates, as generalized velocities and as generalized accelerations, is outlined in another article, and found in many sources.[25][26][27] For the particular case of single-body motion found using the generalized coordinates in a central force, the Euler–Lagrange equations are the same equations found using Newton's second law in a co-rotating frame. For example, the radial equation is:
where is the central force potential and μ is the mass of the object. The left side is a "generalized force" and the first term on the right is the "generalized centrifugal force". However, the left side is not comparable to a Newtonian force, as it does not contain the complete acceleration, and likewise, therefore, the terms on the right-hand side are "generalized forces" and cannot be interpreted as Newtonian forces.[28]
The Lagrangian centrifugal force is derived without explicit use of a rotating frame of reference,[29] but in the case of motion in a central potential the result is the same as the fictitious centrifugal force derived in a co-rotating frame.[6] The Lagrangian use of "centrifugal force" in other, more general cases, however, has only a limited connection to the Newtonian definition.